COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Model based population PK-PD analysis of furosemide for BP lowering effect: A comparative study in primary and secondary hypertension.

Though numerous reports have demonstrated multiple mechanisms by which furosemide can exert its anti-hypertensive response. However, lack of studies describing PK-PD relationship for furosemide featuring its anti-hypertensive property has limited its usage as a blood pressure (BP) lowering agent. Serum concentrations and mean arterial BP were monitored following 40 and 80mgkg-1 multiple oral dose of furosemide in spontaneously hypertensive rats (SHR) and DOCA-salt induced hypertensive (DOCA-salt) rats. A simultaneous population PK-PD relationship using Emax model with effect compartment was developed to compare the anti-hypertensive efficacy of furosemide in these rat models. A two-compartment PK model with Weibull-type absorption and first-order elimination best described the serum concentration-time profile of furosemide. In the present study, post dose serum concentrations of furosemide were found to be lower than the EC50 . The EC50 predicted in DOCA-salt rats was found to be lower (4.5-fold), whereas the tolerance development was higher than that in SHR model. The PK-PD parameter estimates, particularly lower values of EC50 , Ke and Q in DOCA-salt rats as compared to SHR, pinpointed the higher BP lowering efficacy of furosemide in volume overload induced hypertensive conditions. Insignificantly altered serum creatinine and electrolyte levels indicated a favorable side effect profile of furosemide. In conclusion, the final PK-PD model described the data well and provides detailed insights into the use of furosemide as an anti-hypertensive agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app