Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cleavage of β-dystroglycan occurs in sarcoglycan-deficient skeletal muscle without MMP-2 and MMP-9.

BACKGROUND: The dystroglycan complex consists of two subunits: extracellular α-dystroglycan and membrane-spanning β-dystroglycan, which provide a tight link between the extracellular matrix and the intracellular cytoskeleton. Previous studies showed that 43 kDa β-dystroglycan is proteolytically cleaved into the 30 kDa fragment by matrix metalloproteinases (MMPs) in various non-muscle tissues, whereas it is protected from cleavage in muscles by the sarcoglycan complex which resides close to the dystroglycan complex. It is noteworthy that cleaved β-dystroglycan is detected in muscles from patients with sarcoglycanopathy, sarcoglycan-deficient muscular dystrophy. In vitro assays using protease inhibitors suggest that both MMP-2 and MMP-9 contribute to the cleavage of β-dystroglycan. However, this has remained uninvestigated in vivo.

METHODS: We generated triple-knockout (TKO) mice targeting MMP-2, MMP-9 and γ-sarcoglycan to examine the status of β-dystroglycan cleavage in the absence of the candidate matrix metalloproteinases in sarcoglycan-deficient muscles.

RESULTS: Unexpectedly, β-dystroglycan was cleaved in muscles from TKO mice. Muscle pathology was not ameliorated but worsened in TKO mice compared with γ-sarcoglycan single-knockout mice. The gene expression of MMP-14 was up-regulated in TKO mice as well as in γ-sarcoglycan knockout mice. In vitro assay showed MMP-14 is capable to cleave β-dystroglycan.

CONCLUSIONS: Double-targeting of MMP-2 and MMP-9 cannot prevent cleavage of β-dystroglycan in sarcoglycanopathy. Thus, matrix metalloproteinases contributing to β-dystroglycan cleavage are redundant, and MMP-14 could participate in the pathogenesis of sarcoglycanopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app