Add like
Add dislike
Add to saved papers

TBK1 of black carp plays an important role in host innate immune response against SVCV and GCRV.

Tank-binding kinase 1 (TBK1) plays a pivotal role in the induction of type I IFNs in higher vertebrates. To explore the function of TBK1 in teleost, TBK1 of black carp (Mylopharyngodon Piceus) was cloned and characterized in this paper. The full-length cDNA of black carp TBK1 (bcTBK1) consists of 2857 nucleotides and the predicted bcTBK1 protein contains 727 amino acids, which includes an N-terminal kinase domain (KD), an ubiquitin-like domain (ULD) and two C-terminal coiled-coils. The transcription of bcTBK1 was constitutively detected in all the selected tissues and bcTBK1 mRNA level was increased in all selected tissues in response to SVCV or GCRV infection except that in muscle post GCRV invasion. The transcription of bcTBK1 in Mylopharyngodon Piceus fin (MPF) cells was up-regulated by the stimulation of SVCV, GCRV or poly (I:C) but not by LPS treatment. bcTBK1 migrated around 80 kDa in immunoblot assay and was identified as a cytosolic protein by immunofluorescence staining. bcTBK1 showed strong IFN-inducing ability in reporter assay and presented strong antiviral activity against both GCRV and SVCV in EPC cells. The reporter assay demonstrated that TRAF6 of black carp (bcTRAF6) up-regulated bcTBK1-induced IFN expression and the subcellular distribution of bcTBK1 overlapped with that of bcTRAF6 when these two proteins were co-expressed in EPC cells. Taken together, our study support the conclusion that bcTBK1 plays an important role in the antiviral innate immune response of black carp against SVCV and GCRV, in which its activity was positively regulated by bcTRAF6.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app