Add like
Add dislike
Add to saved papers

Functionalized alginate with liquid-like behaviors and its application in wet-spinning.

Carbohydrate Polymers 2017 October 16
Alginate is a kind of marine-derived plant polysaccharide with useful properties including inherent flame-retardancy and biocompatibility, yet poor flowability and low processing efficiency induced by high viscosity impede its further industrial applications. In this study, PEG-substituted tertiary amines were adapted to functionalize alginate with different molecular weight via acid-base reaction to improve the flowability. Based on alginate with low molecular weight, alginate fluids exhibited excellent flowability at room temperature in the absence of solvent. For alginate with high molecular weight, gelatinous precipitated phase exhibited significant shear-thinning properties and higher solid content despite lack of solvent-free flowability, which was applied to wet-spinning. The alginate fibers exhibited increased tensile strength by 104% and elongation at break by 132% compared with conventional alginate fibers, and the spinning efficiency was significantly improved. The proposed strategy is expected to extend to highly efficient processing of other polysaccharides to obtain high-performance biomedical materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app