Add like
Add dislike
Add to saved papers

Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug.

Carbohydrate Polymers 2017 October 16
Hypromellose (HPMC)-based hydrophilic composites (HCs) used for rapid dissolution of ferulic acid (FA) were investigated. Electrospun and casting HCs were prepared from a solution containing HPMC, FA, and polyethylene glycol. Ethanol was used as sheath fluid during coaxial processes, and the effects of its flow rates on the Taylor cone and straight fluid jet were investigated. The morphology, component state, hydrophilicity, and drug dissolution rate of the HCs were characterized. Results demonstrated that all HCs were amorphous materials, and their components were compatible. However, the dissolution rate of electrospun HCs was 10 times faster than that of casting HCs. The smaller the diameters of electrospun HCs were, the better their performances were. The mechanism of electrospun HCs was suggested. By utilizing modified coaxial electrospinning and combinations of drug carriers, new types of HPMC-based HCs can provide an alternative approach for the effective delivery of poorly water-soluble drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app