Add like
Add dislike
Add to saved papers

Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas.

Carbohydrate Polymers 2017 October 16
With the increasing demand of environmental monitoring for toxic and odorous ammonia gas it is desired to develop specific green, cost-effective and in situ passive colorimetric alternatives to current complex instrumentations. In this work, we designed an ammonia gas sensor based on cholesteric liquid crystal films of copper(II)-doped cellulose nanocrystals (CNCCu(II)) whose structure, optical and sensing properties were investigated. The hybrid films using the low doping Cu(II) as a color-tuning agent inherited the chiral nematic signature and optical activity of CNCs, suggesting a strong chelation between copper ions and negatively charged CNCs. The sensing performance illustrates that the CNCCu(II)125 film was sensitive to ammonia gas which could merge into nematic layers of CNCs and trigger-sensed to copper ions chelated on CNCs, consequently arousing a red-shift of reflective wavelength as well as an effective colorimetric transition. Such a hybrid film is anticipated to boost a new gas sensing regime for fast and effective on-site qualitative investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app