Add like
Add dislike
Add to saved papers

Radiation synthesis and performance of novel cellulose-based microsphere adsorbents for efficient removal of boron (III).

Carbohydrate Polymers 2017 October 16
A novel cellulose-based microsphere containing glucamine groups, referred as CVN, was successfully synthesized by radiation-induced graft polymerization of 4-vinylbenzyl chloride onto cellulose microspheres and subsequent functionalization with N-methyl-d-glucamine. The adsorption by CVN for boron (III) from aqueous solutions was evaluated systematically by batch adsorption technique. Langmuir models could fit well with the adsorption behavior of CVN. The CVN adsorbents exhibited a high adsorption capacity up to 12.4mgg-1 towards boron (III) over the wide pH range of 5-8. After the addition of chloride salts, the boron uptake of CVN was enhanced that was attributed to the compensation of the surface charge generated by boron (III) adsorption leading to favor the adsorption. At high concentrations of salts, the ionic strength and different salts have no effect on the adsorption of boron(III). This work provides a new sustainable, cost effective material as a promising specific adsorbent for the removal of boron (III) from saline solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app