Add like
Add dislike
Add to saved papers

Dissociation Chemistry of 3-Oxetanone in the Gas Phase.

3-Oxetanone is a strained cyclic molecule which plays an important role in synthetic chemistry. A few studies exist in the literature about the equilibrium properties of this molecule and the dissociation patterns of substituted 3-oxetanones. For the unsubstituted 3-oxetanone, formation of ketene (CH2 CO) and formaldehyde (HCHO) was considered to be the major dissociation pathway. In a recent work, pyrolysis products of 3-oxetanone molecule in the gas phase were investigated by Fourier transform infrared spectroscopy and photoionization mass spectrometry. In this study, an additional dissociation channel forming ethylene oxide (c-C2 H4 O) and carbon monoxide CO was reported. In the present work, gas phase dissociation chemistry of 3-oxetanone was investigated by electronic structure theory, ab initio classical chemical dynamics simulations, and Rice-Ramsperger-Kassel-Marcus (RRKM) rate constant calculations. The barrier height for the ethylene oxide channel was found to be much higher than the ketene pathway. The dynamics simulations were performed at three different total energies, viz., 150, 200, and 300 kcal/mol, and multiple reaction pathways and varying branching ratios observed. A new dissociation channel involving a ring-opened isomer of ethylene oxide was identified in the simulations. This pathway has a lower energy barrier and was dominant in our dynamics simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app