Add like
Add dislike
Add to saved papers

Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy.

Biomacromolecules 2017 October 10
Benefiting from their inherent localized and controlled release properties, hydrogels are ideal delivery systems for therapeutic drugs or nanoparticles. In particular, applications of hydrogels for the delivery and release of photoresponsive drugs or nanoparticles are receiving increasing attention. However, the effect of the hydrogel matrix on the fluorescence emission and singlet oxygen generation efficiency of the embedded photosensitizers (PSs) has not been clarified. Herein, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) as a water-soluble PS was encapsulated into an injectable hydrogel formed by glycol chitosan and dibenzaldehyde-terminated telechelic poly(ethylene glycol). Compared to free TMPyP solution, the TMPyP encapsulated in the hydrogel exhibits three distinct advantages: (1) more singlet oxygen was generated under the same laser irradiation condition; (2) much longer tumor retention was observed due to the low fluidity of the hydrogel; and (3) the fluorescence intensity of TMPyP was significantly enhanced in the hydrogel due to its decreased self-quenching effect. These excellent characteristics lead to remarkable anticancer efficacy and superior fluorescence emission property of the TMPyP-hydrogel system, promoting the development of imaging-guided photodynamic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app