COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of Spreading Depolarizations in the Motor Cortex and Nucleus Accumbens: Similar Patterns of Oxygen Responses and the Role of Dopamine.

ACS Chemical Neuroscience 2017 November 16
Spreading depolarizations (SD) are pathophysiological phenomena that spontaneously arise in traumatized neural tissue and can promote cellular death. Most investigations of SD are performed in the cortex, a brain region that is susceptible to these depolarizing waves and accessible via a variety of monitoring techniques. Here, we describe SD responses in the cortex and the deep brain region of the nucleus accumbens (NAc) of the anesthetized rat with a minimally invasive, implantable sensor. With high temporal resolution, we characterize the time course of oxygen responses to SD in relation to the electrophysiological depolarization signal. The predominant oxygen pattern consists of four phases: (1) a small initial decrease, (2) a large increase during the SD, (3) a delayed increase, and (4) a persistent decrease from baseline after the SD. Oxygen decreases during SD were also recorded. The latter response occurred more often in the NAc than the cortex (56% vs 20% of locations, respectively), which correlates to denser cortical vascularization. We also find that SDs travel more quickly in the cortex than NAc, likely affected by regional differences in cell type populations. Finally, we investigate the previously uncharacterized effects of dopamine release during SD in the NAc with dopamine receptor blockade. Our results support an inhibitory role of the D2 receptor on SD. As such, the data presented here expands the current understanding of within- and between-region variance in responses to SD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app