Add like
Add dislike
Add to saved papers

Sphingobium naphthae sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil.

A light yellow-coloured, Gram-stain-negative, non-motile and rod-shaped bacterium, designated strain K-3-6T, capable of degrading aliphatic hydrocarbons was isolated from oil-contaminated soil of Biratnagar, Morang, Nepal. It was able to grow at 15-45 °C, at pH 5.0-9.5 and with 0-6 % (w/v) NaCl. Based on 16S rRNA gene sequence analysis, strain K-3-6T belongs to the genus Sphingobium and is closely related to Sphingobium olei IMMIB HF-1T (98.4 % similarity), Sphingobium abikonense NBRC 16140T (98.3 %), Sphingobium rhizovicinum CC-FH12-1T (97.9 %), Sphingobium lactosutens DS20T (97.9 %), Sphingobium amiense NBRC 102518T (97.2 %), Sphingobium phenoxybenzoativorans SC_3T (97.2 %) and Sphingobium fontiphilum Chen16-4T (97.0 %). The predominant respiratory quinone was ubiquinone-10 and the major polyamine was spermidine. The polar lipid profile revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, sphingoglycolipid and phosphatidylmonomethylethanolamine. The predominant fatty acids of strain K-3-6T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C14 : 0, C16 : 0 and C14 : 0 2-OH. The genomic DNA G+C content was 65.6 mol%. Levels of DNA-DNA relatedness between strain K-3-6T and S. olei IMMIB HF-1T, S. abikonense NBRC 16140T, S. lactosutens DS20T, S. rhizovicinum CC-FH12-1T, S. amiense NBRC 102518T and S. fontiphilum Chen16-4T were 34.0, 33.3, 28.7, 26.3, 29.0 and 22.3 %, respectively. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus, strain K-3-6T represents a novel species of the genus Sphingobium, for which the name Sphingobium naphthae sp. nov. is proposed. The type strain is K-3-6T (=KEMB 9005-449T=KACC 19001T=JCM 31713T).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app