Add like
Add dislike
Add to saved papers

Antimicrobial carbon nanospheres.

Nanoscale 2017 October 27
Carbon nanomaterials have found numerous applications in various fields. However, their synthesis and functionalization usually require complicated procedures or tough experimental conditions. Herein, we report for the first time the synthesis of a new type of functional nanomaterial, quaternized carbon nanospheres (QCNSs), with superior antibacterial activity via a one-pot hydrothermal treatment of chitosan and hexadecylbetaine (abbreviated as BS-16). During the hydrothermal process, the direct reaction and carbonization between the amine-containing chitosan and the carboxyl-containing BS-16 were realized within only one step. The as-prepared QCNSs feature a well-defined spherical morphology and a homogeneous size distribution with an average diameter of ∼110 nm. In particular, the QCNSs could effectively kill Gram-positive bacteria with a minimum inhibitory concentration (MIC) of 2.0-5.0 μg mL-1 . Meanwhile, the QCNSs showed excellent cytocompatibility towards normal human liver and lung cells and good hemocompatibility towards red blood cells. Moreover, in bacteria-infected macrophage cells, the QCNSs could selectively kill bacteria while the macrophage cells remained unaffected, which further confirmed their biocompatibility. Besides, we have also elucidated the antibacterial mechanism of the QCNSs by disrupting the bacterial cell walls/membranes via the bacterial adsorption and insertion of the long alkyl chain-containing quaternary ammonium groups on the particle surface. The present work provides a novel method for the preparation of functional carbon nanomaterials, which may promote the development of metal-free antibacterial agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app