Add like
Add dislike
Add to saved papers

Simulating the reactions of substituted pyridinio-N-phosphonates with pyridine as a model for biological phosphoryl transfer.

Phosphoryl transfer reactions can proceed through several plausible mechanisms, and the potential for both solvent and substrate-assisted pathways (involving proton transfer to the phosphoryl oxygens) complicates both experimental and computational interpretations. To avoid this problem, we have used electronic structure calculations to probe the mechanisms of the reactions of pyridinio-N-phosphonates with pyridine. These compounds avoid the additional complexity introduced by proton transfer between the nucleophile and the leaving group, while also serving as a valuable model for biological P-N cleavage. Through a comparative study of a range of substrates of varying basicity, we demonstrate a unified concerted mechanism for the phosphoryl transfer reactions of these model compounds, proceeding through a dissociative transition state. Finally, a comparison of these transition states with previously characterized transition states for related compounds provides a more complete model for non-enzymatic phosphoryl transfer, which is a critical stepping stone to being able to fully understand phosphoryl transfer in biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app