Add like
Add dislike
Add to saved papers

Continuous Force Decoding from Deep Brain Local Field Potentials for Brain Computer Interfacing.

Current Brain Computer Interface (BCI) systems are limited by relying on neuronal spikes and decoding limited to kinematics only. For a BCI system to be practically useful, it should be able to decode brain information on a continuous basis with low latency. This study investigates if force can be decoded from local field potentials (LFP) recorded with deep brain electrodes located at the Subthalamic nucleus (STN) using data from 5 patients with Parkinson's disease, on a continuous basis with low latency. A Wiener-Cascade (WC) model based decoder was proposed using both time-domain and frequency-domain features. The results suggest that high gamma band (300-500Hz) activity, in addition to the beta (13-30Hz) and gamma band (55-90Hz) activity is the most informative for force prediction but combining all features led to better decoding performance. Furthermore, LFP signals preceding the force output by up to 1256 milliseconds were found to be predictive of the force output.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app