Add like
Add dislike
Add to saved papers

Paracrine Potential of the Human Adipose Tissue-Derived Stem Cells to Modulate Balance between Matrix Metalloproteinases and Their Inhibitors in the Osteoarthritic Cartilage In Vitro.

Adipose tissue represents an abundant source of stem cells. Along with anti-inflammatory effects, ASC secrete various factors that may modulate metabolism of extracellular matrix in osteoarthritic (OA) cartilage, suggesting that the presence of ASC could be advantageous for OA cartilage due to the recovery of homeostasis between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs). To evaluate these effects, cartilage explants (CE) were cocultured with ASC for 3 and 7 days under stimulation with or without IL-1β. The pattern of gene expression in CE was modified by ASC, including the upregulation of COL1A1 and COL3A1 and the downregulation of MMP13 and COL10A1. The production of MMP-1, MMP-3, and MMP-13 by ASC was not significant; moreover, cocultures with ASC reduced MMP-13 production in CE. In conclusion, active production of TIMP-1, TIMP-2, TIMP-3, IL-6, IL-8, and gelatinases MMP-2 and MMP-9 by ASC may be involved in the extracellular matrix remodelling, as indicated by the altered expression of collagens, the downregulated production of MMP-13, and the reduced chondrocyte apoptosis in the cocultured CE. These data suggest that ASC modulated homeostasis of MMPs/TIMPs in degenerated OA cartilage in vitro and might be favourable in case of the intra-articular application of ASC therapy for the treatment of OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app