Add like
Add dislike
Add to saved papers

Treatment Associated Changes of Functional Connectivity of Midbrain/Brainstem Nuclei in Major Depressive Disorder.

Scientific Reports 2017 August 18
Previous functional magnetic resonance imaging (fMRI) studies demonstrated an abnormally coordinated network functioning in Major Depression Disorder (MDD) during rest. The main monoamine-producing nuclei within midbrain/brainstem are functionally integrated within these specific networks. Therefore, we aimed to investigate the resting-state functional connectivity (RSFC) of these nuclei in 45 MDD patients and differences between patients receiving two different classes of antidepressant drugs. Patients showed reduced RSFC from the ventral tegmental area (VTA) to dorsal anterior cingulate cortex (dACC) and stronger RSFC to the left amygdala and dorsolateral prefrontal cortex (DLPFC). Patients treated with antidepressants influencing noradrenergic and serotonergic neurotransmission showed different RSFC from locus coeruleus to DLPFC compared to patients treated with antidepressants influencing serotonergic neurotransmission only. In the opposite contrast patients showed stronger RSFC from dorsal raphe to posterior brain regions. Enhanced VTA-RSFC to amygdala as a central region of the salience network may indicate an over-attribution of the affective salience to internally-oriented processes. Significant correlation between decreased VTA-dACC functional connectivity and the BDI-II somatic symptoms indicates an association with diminished volition and behavioral activation in MDD. The observed differences in the FC of the midbrain/brainstem nuclei between two classes of antidepressants suggest differential neural effects of SSRIs and SNRIs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app