JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effect of mutations in the lid region of Thermomyces lanuginosus lipase on interactions with triglyceride surfaces: A multi-scale simulation study.

Lipases naturally function at the interface formed between amphiphilic molecules and the aqueous environment. Thermomyces lanuginosus lipase (TLL) is a well-characterised lipase, known to exhibit interfacial activation during which a lid region covering the active site becomes displaced upon interaction with an interface. In this study, we investigate the effect the amino acid sequence of the lid region on interfacial binding and lid dynamics of TLL. Three TLL variants were investigated, a wild-type variant, a variant containing an esterase lid region (Esterase), and a Hybrid variant, containing both wild-type lid residues and esterase lid residues. Multiple coarse-grained molecular dynamics simulations revealed that the interfacial binding orientation of TLL was significantly affected by the nature of amino acids in the lid region, and atomistic simulations indicated effects on the structural dynamics of the lid itself. The atomistic simulations, as well as steered molecular dynamics simulations, also indicated that the Esterase lid region was less flexible than the wild-type lid region, whereas the Hybrid variant displayed superior lid flexibility and stability in the open conformation both at the interface, and in aqueous solution. Additional experiments performed to investigate the activity and binding behaviour of the lipase variants indicated a slightly higher specific activity for the Hybrid variant compared to the wild-type variant, correlating the observations of increased lid flexibility. Together, these results are in line with previous experimental studies, highlighting the importance of the nature of the amino acid residues within the functional lid region of lipases, particularly regarding interfacial binding orientation, activation, and structural stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app