JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC.

Genomics 2018 January
Many efforts have been made in predicting the subcellular localization of eukaryotic proteins, but most of the existing methods have the following two limitations: (1) their coverage scope is less than ten locations and hence many organelles in an eukaryotic cell cannot be covered, and (2) they can only be used to deal with single-label systems in which each of the constituent proteins has one and only one location. Actually, proteins with multiple locations are particularly interesting since they may have some exceptional functions very important for in-depth understanding the biological process in a cell and for selecting drug target as well. Although several predictors (such as "Euk-mPLoc", "Euk-PLoc 2.0" and "iLoc-Euk") can cover up to 22 different location sites, and they also have the function to treat multi-labeled proteins, further efforts are needed to improve their prediction quality, particularly in enhancing the absolute true rate and in reducing the absolute false rate. Here we propose a new predictor called "pLoc-mEuk" by extracting the key GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validations on a high-quality and stringent benchmark dataset have indicated that the proposed pLoc-mEuk predictor is remarkably superior to iLoc-Euk, the best of the aforementioned three predictors. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at https://www.jci-bioinfo.cn/pLoc-mEuk/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app