Add like
Add dislike
Add to saved papers

Sink or swim? Vertical movement and nutrient storage in phytoplankton.

A simulation model of vertically migrating phytoplankton is presented, using a Lagrangian, individual-based computational approach. Algal cells acquire and store nutrient at the bottom of the habitat, using stored nutrient to grow while in shallower waters. Stored nutrient also governs movement: cells sink when their nutrient quota falls below a threshold; otherwise they rise (or at least sink more slowly). Although the bottom of the habitat provides the growth-limiting nutrient, it also entails a risk of mortality. For a parameter set representing phosphorus-limited algae with a fixed nutrient storage capacity, neither continual sinking nor continual rising are optimal strategies. Instead, an adaptive dynamics approach suggests there is an optimal movement strategy in which cells rise when their storage capacity is partially filled, and otherwise sink. When the movement strategy is fixed in such a way and storage capacity is free to evolve, storage capacity approaches an optimal value several times higher than the minimal quota permitting population growth. Vertical movement and nutrient storage affect the vertical distribution of total nutrient. When cells always sink, total nutrient declines exponentially from the nutrient source at the bottom to a surface minimum. When cells always rise, there is a peak of total nutrient at the bottom, and another at the surface, with a minimum between. When cells move optimally, the vertical distribution of total nutrient can be close to uniform, or have a peak at mid-depth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app