HISTORICAL ARTICLE
JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Key developments that impacted the field of mechanobiology and mechanotransduction.

Advances in mechanobiology have evolved through insights from multiple disciplines including structural engineering, biomechanics, vascular biology, and orthopaedics. In this paper, we reviewed the impact of key reports related to the study of applied loads on tissues and cells and the resulting signal transduction pathways. We addressed how technology has helped advance the burgeoning field of mechanobiology (over 33,600 publications from 1970 to 2016). We analyzed the impact of critical ideas and then determined how these concepts influenced the mechanobiology field by looking at the citation frequency of these reports as well as tracking how the overall number of citations within the field changed over time. These data allowed us to understand how a key publication, idea, or technology guided or enabled the field. Initial observations of how forces acted on bone and soft tissues stimulated the development of computational solutions defining how forces affect tissue modeling and remodeling. Enabling technologies, such as cell and tissue stretching, compression, and shear stress devices, allowed more researchers to explore how deformation and fluid flow affect cells. Observation of the cell as a tensegrity structure and advanced methods to study genetic regulation in cells further advanced knowledge of specific mechanisms of mechanotransduction. The future of the field will involve developing gene and drug therapies to simulate or augment beneficial load regimens in patients and in mechanically conditioning organs for implantation. Here, we addressed a history of the field, but we limited our discussions to advances in musculoskeletal mechanobiology, primarily in bone, tendon, and ligament tissues. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:605-619, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app