Add like
Add dislike
Add to saved papers

A Multiobjective Evolutionary Algorithm Based on Structural and Attribute Similarities for Community Detection in Attributed Networks.

Most of the existing community detection algorithms are based on vertex connectivity. While in many real networks, each vertex usually has one or more attributes describing its properties which are often homogeneous in a cluster. Such networks can be modeled as attributed graphs, whose attributes sometimes are equally important to topological structure in graph clustering. One important challenge is to detect communities considering both topological structure and vertex properties simultaneously. To this propose, a multiobjective evolutionary algorithm based on structural and attribute similarities (MOEA-SA) is first proposed to solve the attributed graph clustering problems in this paper. In MOEA-SA, a new objective named as attribute similarity is proposed and another objective employed is the modularity . A hybrid representation is used and a neighborhood correction strategy is designed to repair the wrongly assigned genes through making balance between structural and attribute information. Moreover, an effective multi-individual-based mutation operator is designed to guide the evolution toward the good direction. The performance of MOEA-SA is validated on several real Facebook attributed graphs and several ego-networks with multiattribute. Two measurements, namely density and entropy , are used to evaluate the quality of communities obtained. Experimental results demonstrate the effectiveness of MOEA-SA and the systematic comparisons with existing methods show that MOEA-SA can get better values of and in each graph and find more relevant communities with practical meanings. Knee points corresponding to the best compromise solutions are calculated to guide decision makers to make convenient choices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app