Add like
Add dislike
Add to saved papers

Tracking the Progress and Mechanism Study of a Solvothermal in Situ Domino N-Alkylation Reaction of Triethylamine and Ammonia Assisted by Ferrous Sulfate.

Inorganic Chemistry 2017 September 6
Atom economic in situ domino N-alkylation reactions of triethylamine/ammonia with 2-(hydroxymethyl)quinolin-8-ol (HL-OH) assisted by FeSO4 ·7H2 O were realized under mild solvothermal conditions at 120 °C in acetonitrile. The resulting tripodal 2,2',2″-[nitrilotris(methylene)]tris(quinolin-8-ol) (H3 L3 -N) forms a linear trimer [Fe3 (L3 -N)2 ] (1). Electrospray ionization mass spectrometry of the reaction solution provides evidence for the intermediates of three steps, while crystallography and X-ray photoelectron spectroscopy characterize the trimer. Shortening the time of the reaction allowed for the organic intermediates to be isolated, which led to a proposed mechanism. The method provides a facile way to produce symmetric tertiary amine from widely used NEt3 and NH3 . The results represent an example of the in situ Fe2+ -catalyzed domino reaction in which Fe2+ is coordinated by the generated ligands and is involved in each step until the final cluster 1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app