JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Coarse-Grained Model of the Dynamics of Electrolyte Solutions.

Ion-specific solvation has fundamental implications in biochemistry, and the thermodynamics and dynamics of aqueous salt solutions have correspondingly been investigated intensively. Nonetheless, there are fundamental unresolved issues in modeling the dynamics of aqueous salt solutions and the related problem of polymers dissolved in these solutions. In particular, experiments show that the self-diffusion coefficient, D, of water molecules in electrolyte solutions can be either enhanced or suppressed by particular salts having the same valence where the observed changes correlate with the Hofmeister series governing the relative solubility of proteins and water-soluble polymers in the same salt solutions. Recent studies have demonstrated that common atomistic models of aqueous electrolyte solutions completely fail to reproduce this basic phenomenon. Drawing on similar trends observed in the field of polymer nanocomposites, we propose a coarse-grained model of aqueous electrolyte solutions that captures the observed trends and that offers physical insight into the influence of salt on the thermodynamic and dynamic properties of electrolyte solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app