Add like
Add dislike
Add to saved papers

Catalytic Intramolecular Cycloaddition Reactions by Using a Discrete Molecular Architecture.

A discrete tetragonal tube-shaped complex (MT-1) has been synthesised by coordination-driven self-assembly of a carbazole-based tetraimidazole donor L and a Pd(II) 90° acceptor, that is, [cis-(dppf)Pd(OTf)2 ] (dppf=diphenylphosphinoferrocene, OTf=CF3 SO3 - ). Complex MT-1 was characterised by multinuclear NMR, ESI-MS and single-crystal X-ray diffraction analysis (SCXRD), which showed its symmetrical tetrafacial tube-shaped architecture possessing a large cavity described by four aromatic walls. This coordination cage was successfully utilised as a molecular vessel to perform intramolecular cycloaddition reactions of O-allylated benzylidinebarbituric acid derivatives inside its confined nanospace. The presence of a catalytic amount of MT-1 promoted [4+2] cycloaddition reactions in a regio- and stereoselective manner, yielding the corresponding penta/tetracyclouracil derivatives in good yields under mild reaction conditions. This protocol is interesting compared with the literature reports for the synthesis of similar chromenopyran pyrimidinedione derivatives under high-temperature reflux conditions or solid-state melt reactions (SSMRs).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app