Add like
Add dislike
Add to saved papers

Solid-State Step-Scan FTIR Spectroscopy of Binuclear Copper(I) Complexes.

The structure in the ground and excited electronic state of two binuclear CuI N-heterocyclic phosphine complexes that are promising for implementation in organic light-emitting diodes is investigated by a combination of the time-resolved step-scan FTIR technique and quantum chemical calculations at the DFT level of theory. In contrast to the usual application of step-scan FTIR spectroscopy in solution, the herein-presented analyses are performed in a solid phase, that is, the CuI complexes are embedded in a KBr matrix (KBr pellet). The application of solid-state time-resolved step-scan FTIR spectroscopy is of great importance for transition metal complexes, since their photophysical properties often change on moving from solid to dissolved samples. The efficient applicability of the solid-state step-scan technique in a KBr matrix is demonstrated on the chosen CuI reference systems on nano- and microsecond timescales with an excitation wavelength of 355 nm. By comparison with theoretical results, the structure of the complexes in the electronic ground and lowest-lying electronically excited state can be determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app