Add like
Add dislike
Add to saved papers

Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family.

Assembling multiple DNA fragments into functional plasmids is an important and often rate-limiting step in engineering new functions in living systems. Bacteriophage integrases are enzymes that carry out efficient recombination reactions between short, defined DNA sequences known as att sites. These DNA splicing reactions can be used to assemble large numbers of DNA fragments into a functional circular plasmid in a method termed serine integrase recombinational assembly (SIRA). The resulting DNA assemblies can easily be modified by further recombination reactions catalyzed by the same integrase in the presence of its recombination directionality factor (RDF). Here we present a set of protocols for the overexpression and purification of bacteriophage ϕC31 and Bxb1 integrase and RDF proteins, their use in DNA assembly reactions, and subsequent modification of the resulting DNA assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app