Add like
Add dislike
Add to saved papers

2-Deoxy-D-glucose Restore Glucocorticoid Sensitivity in Acute Lymphoblastic Leukemia via Modification of N-Linked Glycosylation in an Oxygen Tension-Independent Manner.

In childhood acute lymphoblastic leukemia, treatment failure is associated with resistance to glucocorticoid agents. Resistance to this class of drugs represents one of the strongest indicators of poor clinical outcome. We show that leukemic cells, which are resistant to the glucocorticoid drug methylprednisolone, display a higher demand of glucose associated with a deregulation of metabolic pathways, in comparison to sensitive cells. Interestingly, a combinatorial treatment of glucocorticoid and the glucose analog 2-deoxy-D-glucose displayed a synergistic effect in methylprednisolone-resistant cells, in an oxygen tension-independent manner. Unlike solid tumors, where 2-deoxy-D-glucose promotes inhibition of glycolysis by hexokinase II exclusively under hypoxic conditions, we were able to show that the antileukemic effects of 2-deoxy-D-glucose are far more complex in leukemia. We demonstrate a hexokinase II-independent cell viability decrease and apoptosis induction of the glucose analog in leukemia. Additionally, due to the structural similarity of 2-deoxy-D-glucose with mannose, we could confirm that the mechanism by which 2-deoxy-D-glucose predominantly acts in leukemia is via modification in N-linked glycosylation, leading to endoplasmic reticulum stress and consequently induction of the unfolded protein response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app