Add like
Add dislike
Add to saved papers

On mechanism behind UV-A light enhanced antibacterial activity of gallic acid and propyl gallate against Escherichia coli O157:H7.

Scientific Reports 2017 August 17
Possible mechanisms behind the enhanced antimicrobial activity of gallic acid (GA) and its ester propyl gallate (PG) in the presence of UV-A light against Escherichia coli O157:H7 were investigated. GA by itself is a mild antimicrobial and has a pro-oxidant ability. We found that the presence of UV-A light increases the uptake of GA by the bacteria. Once GA is internalized, the interaction between GA and UV-A induces intracellular ROS formation, leading to oxidative damage. Concurrently, GA + UV-A also inhibits the activity of superoxide dismutase (SOD), magnifying the imbalance of redox status of E. coli O157:H7. In addition to ROS induced damage, UV-A light and GA also cause injury to the cell membrane of E. coli O157:H7. UV-A exposed PG caused oxidative damage to the cell and significantly higher damage to the cell membrane than GA + UV-A treatment, explaining its higher effectiveness than GA + UV-A treatment. The findings presented here may be useful in developing new antimicrobial sanitation technologies for food and pharmaceutical industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app