JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Filling the void: a role for exercise-induced BDNF and brain amyloid precursor protein processing.

Inactivity, obesity, and insulin resistance are significant risk factors for the development of Alzheimer's disease (AD). Several studies have demonstrated that diet-induced obesity, inactivity, and insulin resistance exacerbate the neuropathological hallmarks of AD. The aggregation of β-amyloid peptides is one of these hallmarks. β-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in amyloid precursor protein (APP) processing, leading to β-amyloid peptide formation. Understanding how BACE1 content and activity are regulated is essential for establishing therapies aimed at reducing and/or slowing the progression of AD. Exercise training has been proven to reduce the risk of AD as well as decrease β-amyloid production and BACE1 content and/or activity. However, these long-term interventions also result in improvements in adiposity, circulating metabolites, glucose tolerance, and insulin sensitivity making it difficult to determine the direct effects of exercise on brain APP processing. This review highlights this large void in our knowledge and discusses our current understanding of the direct of effect of exercise on β-amyloid production. We have concentrated on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the direct effects of exercise on reducing brain BACE1 content and activity as well as β-amyloid production. Future studies should aim to generate a greater understanding of how obesity and exercise can directly alter APP processing and AD-related pathologies. This knowledge could provide evidence-based hypotheses for designing therapies to reduce the risk of AD and dementia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app