Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of Neonatal Exposure to Zearalenone on Puberty Timing, Hypothalamic Nuclei of AVPV and ARC, and Reproductive Functions in Female Mice.

Reproductive Sciences 2017 September
It is now established that mycoestrogen zearalenone (ZEN) disrupts reproductive physiology, but the specific mechanisms by which this occurs remain unknown, especially in brain. Growing evidence suggests that populations of estradiol (E2 )-sensitive neurons in anteroventral periventricular (AVPV) and arcuate (ARC) nuclei, especially kisspeptin neurons, play a pivotal role in the timing of puberty onset, ovulation, and normal reproduction. The present study was conducted to find whether the ZEN can cause estrogen-like actions during the critical period of neonatal differentiation. In this study, we compared the effect of neonatal exposure to sesame oil, E2 benzoate (EB, 20 µg/kg body weight [bw]), and 3 various doses: 0.2, 1, and 2 mg/kg bw of ZEN (0.2, 1, and 2 ZEN) on the onset of puberty and estrus cyclicity as well as ovarian follicular profile, kisspeptin expression, and neuronal density in AVPV and ARC hypothalamic nuclei and E2 and luteinizing hormone (LH) levels on postnatal day 70. Control mice received no treatment. Vaginal opening was significantly advanced by EB and 2 ZEN. Disrupted estrus cycles and decreased follicular profiles were observed in EB, 1 ZEN, and 2 ZEN animals. In addition, EB, 1 ZEN, and 2 ZEN reduced the expression of kisspeptin and neuronal density of AVPV and ARC nuclei and caused a decrease in the LH and an increase in E2 plasma levels. Taken together, our observations provide physiological evidence that neonatal exposure to ZEN exerts estrogen-like actions in the estrogen-sensitive hypothalamic AVPV and ARC nuclei, controlling reproductive functions in adult female mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app