Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.

Crouch or "flexed knee" gait is a pathological gait pattern affecting many individuals with cerebral palsy. One proposed method to alleviate crouch is to provide robotic assistance to knee extension during walking. The purpose of this study was to evaluate how the magnitude of knee extensor torque affects knee kinematics, kinetics, and muscle activity. Motion capture, ground reaction force and electromyography data were collected while four participants with crouch gait from cerebral palsy walked with assistance from a novel robotic exoskeleton on an instrumented treadmill. Different magnitudes of knee extensor torque were provided during the stance (range: 0.09-0.38 Nm/kg) and swing (range: 0.09-0.29 Nm/kg) phases of the gait cycle. Using a linear regression analysis, we found that greater torque from the exoskeleton was positively associated with increased knee extension (reduction in crouch) at foot contact and mid-stance, negatively associated with the biological knee extensor moment, and positively associated with knee flexor muscle activity. Determining the relationships between exoskeleton assistance and knee kinematics and kinetics will benefit the continued investigation of robotic treatment strategies for treating crouch gait. Our findings indicate the importance of properly tuned robotic control strategies for gait rehabilitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app