Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques.

Robot-assisted gait training is becoming increasingly common to support recovery of walking function after neurological injury. How to formulate controllers capable of promoting desired features in gait, i.e. goals, is complicated by the limited understanding of the human response to robotic input. A possible method to formulate controllers for goal-oriented gait training is based on the analysis of the joint torques applied by healthy subjects to modulate such goals. The objective of this work is to understand how sagittal plane joint torque is affected by two important gait parameters: gait speed (GS) and stride length (SL). We here present the results obtained from healthy subjects walking on a treadmill at different speeds, and asked to modulate stride length via visual feedback. Via principal component analysis, we extracted the global effects of the two factors on the peak-to-peak amplitude of joint torques. Next, we used a torque pulse approximation analysis to determine optimal timing and amplitude of torque pulses that approximate the SL-specific difference in joint torque profiles measured at different values of GS. Our results show a strong effect of GS on the torque profiles in all joints considered. In contrast, SL mostly affects the torque produced at the knee joint at early and late stance, with smaller effects on the hip and ankle joints. Our analysis generated a set of torque assistance profiles that will be experimentally tested using gait training robots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app