Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effects of control signal noise on simultaneous submovements.

Understanding the stereotypical characteristics of human movement can better inform rehabilitation practices by providing a template of healthy and expected human motor control. Multiplicative noise is inherent in goal-directed movement, such as reaching to grasp an object. Multiplicative noise plays an important role in computational motor control models to help support phenomena such as stereotypical kinematic profiles in time-constrained and unconstrained tasks. Most tasks are not carried out along an isolated degree-of-freedom (DOF), and modelling the contribution of noise can be difficult. Here we add a noise term proportional to the degree of simultaneity for multi-DOF tasks to approximate the contribution of system noise. With this approach, we are able to explain previously observed motor phenomena including the presence of submovements in multi-DOF tasks, and the transition from simultaneous to sequential control of joints without the presence of feedback. Inclusion of a simultaneous multiplicative noise term presents a simple theory that expands on previous research in order to describe characteristics of multiple-DOF movements. This model can be used as a guide to compare healthy human motor control to the movements of patients receiving rehabilitation in an effort to improve their motor planning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app