Add like
Add dislike
Add to saved papers

Mixed-ligand iridium(iii) complexes as photodynamic anticancer agents.

Many phosphorescent iridium complexes are potent candidates as photodynamic therapeutic agents. In this work, a series of mixed-ligand phosphorescent iridium complexes (Ir1: [Ir(L1 )(bpy)Cl](PF6 )2 ; Ir2: [Ir(L1 )(ppy)Cl](PF6 ); Ir3: [Ir(L2 )(bpy)Cl](PF6 )2 ; Ir4: [Ir(L2 )(ppy)Cl](PF6 ). L1 = 2,6-bis(2-benzimidazolyl)pyridine; bpy = 2,2'-bipyridine; L2 = 2,6-bis(1-methyl-benzimidazol-2-yl)pyridine; ppy = 2-phenylpyridine) have been synthesized and characterized. These complexes display high luminescence quantum yields and long phosphorescence lifetimes. All the complexes are resistant to hydrolysis in aqueous solutions, and can produce singlet oxygen (1 O2 ) effectively upon irradiation. Ir1 and Ir2 show pH-sensitive emission properties. Interestingly, higher cellular uptake efficiency is observed for Ir2 and Ir4 with the cyclometalated ppy ligand in human lung adenocarcinoma A549 cells. Ir2 with pH-sensitive emission properties can selectively image lysosomes, and Ir4 can specifically target mitochondria. Both Ir2 and Ir4 exhibit potent photodynamic therapy (PDT) effects, with Ir2 displaying a higher phototoxicity index (PI) especially in A549 cells (PI > 54). Mechanism studies indicate that Ir2 and Ir4 can induce apoptosis through reactive oxygen species (ROS) generation and caspase activation upon visible light (425 nm) irradiation. As expected, Ir2 can damage lysosomes more effectively with a pH-sensitive singlet oxygen (1 O2 ) yield, while Ir4 tends to impair mitochondrial function. Nevertheless, the practical application of Ir2 and Ir4 for PDT may be limited to superficial tumors due to the short excitation wavelength (425 nm). Our study gives insights into the design and anticancer mechanisms of new metal-based PDT anticancer agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app