Add like
Add dislike
Add to saved papers

Enhanced Production of κ-Carrageenase and κ-Carrageenan Oligosaccharides through Immobilization of Thalassospira sp. Fjfst-332 with Magnetic Fe3O4-Chitosan Microspheres.

In this study, immobilized bacteria (IMB) microsphere was prepared by embedding κ-carrageenase-producing Thalassospira sp. Fjfst-332 (TF332) onto a magnetic Fe3O4-chitosan carrier. The performance of Fe3O4-chitosan carrier was optimized by comparing its bacteria immobilization capacity at different Fe3O4:chitosan ratios and temperatures, while the functions of IMB microspheres were characterized by examining their κ-carrageenase production at different temperatures, pH's, and reuse cycles. At the 1:1 (w:w) Fe3O4:chitosan ratio, the Fe3O4-chitosan carriers possessed sufficient anchoring capacity for bacterial immobilization without significant compromise of their magnetism for magnetic separation of IMB from culture media. The spectroscopic analysis of IMB microspheres indicated that the immobilization of TF332 might affect the amide groups in chitosan. Compared to free bacteria, IMB can produce κ-carrageenase at higher temperature, wider pH range, and faster rate. More importantly, the κ-carrageenase-producing activity was sustained for at least seven reuse cycles. The major κ-carrageenan degradation products of IMB-derived κ-carrageenase were the oligosaccharides containing two to six monosaccharide units. Overall, this Fe3O4-chitosan-TF-332 microsphere has the potential to become a stable and reusable platform for large-scale production of κ-carrageenan oligosaccharides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app