Add like
Add dislike
Add to saved papers

Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria.

Functional morphological adaptation is an implicit assumption across many ecological studies. However, despite a few pioneering attempts to link bacterial form and function, functional morphology is largely unstudied in prokaryotes. One intriguing candidate for analysis is bacterial shape, as multiple lines of theory indicate that cell shape and motility should be strongly correlated. Here we present a large-scale use of modern phylogenetic comparative methods to explore this relationship across 325 species of the phylum Firmicutes. In contrast to clear predictions from theory, we show that cell shape and motility are not coupled, and that transitions to and from flagellar motility are common and strongly associated with lifestyle (free-living or host-associated). We find no association between shape and lifestyle, and contrary to recent evidence, no indication that shape is associated with pathogenicity. Our results suggest that the independent evolution of shape and motility in this group might allow a greater evolutionary flexibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app