Add like
Add dislike
Add to saved papers

Effect of step-feeding on the performance of lab-scale columns simulating vertical flow-horizontal flow constructed wetlands.

The effect of step-feeding (untreated wastewater by-pass) on the performance of lab-scale columns simulating a hybrid vertical flow (VF)-horizontal flow (HF) constructed wetland (CW) system was studied. Step-feeding strategies have been adopted in several kinds of CW, but this is the first report about the use of step-feeding in VF + HF hybrid systems treating domestic wastewater. Applied loading rates were 7-11 g BOD5 /m2  day and 2.1-3.4 g TN/m2  day (overall system). Removal efficiency reached 98% TSS and COD and 99% BOD5 on average, whilst a 50% by-pass improved TN removal from 31 to 50%. Maximum surface nitrification rate (5.5 g N/m2  day) was obtained in VF unit, whilst maximum denitrification rate (1.8 g N/m2  day) was observed in HF unit. Referred to the overall system, maximum surface nitrification and denitrification rates were 2.2 and 1.6 g N/m2  day, respectively. However, potential nitrifying and denitrifying activities (batch assays) were 15.0 and 58.9 g N/m2  day, respectively. Even at 50% by-pass, operational conditions in HF unit (dissolved oxygen, redox, COD/TN ratio) were not suitable enough for denitrification. However, methane emissions were not observed and nitrous oxide emissions were relatively low.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app