Add like
Add dislike
Add to saved papers

Methane enhances aluminum resistance in alfalfa seedlings by reducing aluminum accumulation and reestablishing redox homeostasis.

Methane (CH4 ) is emerging as a candidate of signal molecule recently. However, whether or how CH4 enhances plant adaptation to aluminum (Al)-contaminated environment is still unknown. In this report, the physiological roles and possible molecular mechanisms of CH4 in the modulation of Al toxicity in alfalfa seedlings were characterized. Our results showed that, CH4 pretreatment could alleviate Al-induced seedling growth inhibition and redox imbalance. The defensive effects of CH4 against Al toxicity including the remission of Al-induced root elongation inhibition, nutrient disorder, and relative electrolyte leakage. Moreover, contents of organic acids, including citrate, malate, and oxalate, were increased by CH4 . These results were paralleled by the findings of CH4 regulated organic acids metabolism and transport genes, citrate synthase, malate dehydrogenase, aluminum-activated malate transporter, and aluminum activated citrate transporter. Consistently, Al accumulation in seedling roots was decreased after CH4 treatment. In addition, Al-induced oxidative stress was also alleviated by CH4 , through the regulation of the activities of anti-oxidative enzymes, such as ascorbate peroxidase, superoxide dismutase, and peroxidase, as well as their corresponding transcripts. Our data clearly suggested that CH4 alleviates Al toxicity by reducing Al accumulation in organic acid-dependent fashion, and reestablishing redox homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app