Add like
Add dislike
Add to saved papers

Effect of Achillea wilhelmsii extract on expression of the human telomerase reverse transcriptase mRNA in the PC3 prostate cancer cell line.

Biomedical Reports 2017 September
Evidence has indicated that human telomerase reverse transcriptase (hTERT) was overexpressed in prostate cancer (PCa). Achillea wilhelmsii (AW) is a plant that has been traditionally used for its medicinal properties. The aim of current study was to evaluate the effects of AW extract on a PCa cell line. The cytotoxic activity of the hydroalcoholic extract of AW was studied on the PCa PC3 cell line using MTT assay. Flow cytometry was used to evaluate the effects of the extract on the apoptosis. The expression of hTERT mRNA was analyzed by the reverse transcription-quantitative polymerase chain reaction method. The ELISA method was used to measure the levels of telomerase enzyme. The hydroalcoholic AW extract demonstrated the appropriate inhibitory effect in 150 µg/ml concentration (IC50) on PC3 cell line following 48 h treatment. Treatment of the PC3 cells with AW resulted in a significant increase in early and late apoptotic cells and a decrease in live cells (P<0.001), in a dose-dependent manner. Moreover, the early apoptotic cells were significantly higher than late apoptotic cells. The hTERT mRNA expression was decreased following 24 h treatment of AW extract, although it was not different between 2, 4, 8 and 12 h treatments or 24, 48 and 72 h treatments. In addition, the hTERT concentration was significantly decreased following 24 h treatment of AW extract with the marginal P-value. There was no significant difference regarding hTERT concentration between 2, 4, 8 and 12 h treatments or 24, 48 and 72 h treatments. The hydroalcoholic extract of AW induced potent antiproliferative and apoptotic effects in PC3 cell line, which could be explainable by its high potency to inhibit expression of the prominent oncogene hTERT in PCa. Therefore, targeting telomerase represents a promising strategy for PCa therapy, and AW may have considerable potential for development as a novel natural anticancer agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app