Add like
Add dislike
Add to saved papers

Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets.

Scientific Reports 2017 August 16
Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated phenotype is therefore important for success in both applications. This study aimed to optimize a method for one-week storage of CES for their widespread distribution and use in regenerative medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression increased between temperatures 8-16 °C. At 24 °C, reduced ABCG2 expression coincided with increased mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, CK10 and involucrin fluorescence combined with morphology observations supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-stored control suggesting that this temperature may be ideal for storage of CES.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app