Add like
Add dislike
Add to saved papers

Retarded saturation of the areal capacitance using 3D-aligned MnO2 thin film nanostructures as a supercapacitor electrode.

Scientific Reports 2017 August 16
The supercapacitive properties of manganese oxide (MnO2) thin films electrodeposited on three-dimensionally (3D) aligned inverse-opal nickel nanostructures are investigated. Compared to conventional planar or two-dimensionally (2D) aligned nanostructures, 3D-aligned nanostructures can provide considerably increased and controllable contacts between the electrode and electrolyte. As a result, saturation of the areal capacitance with the electrode thickness and associated decrease of the specific capacitance, C sp , become much slower than those of the planar and 2D-aligned electrode systems. While, for planar MnO2 electrodes, the C sp of a 60-cycle electrodeposited electrode is only the half of the 10-cycle electrodeposited one, the value of the 3D-nanostructured electrode remains unchanged under the same condition. The maximum C sp value of 864 F g(-1), and C sp retention of 87.7% after 5000 cycles of galvanostatic charge-discharge are obtained. The voltammetric response is also improved significantly and the C sp measured at 200 mV s(-1) retains 71.7% of the value measured at 10 mV s(-1). More quantitative analysis on the effect of this 3D-aligned nanostructuring is also performed using a deconvolution of the capacitive elements in the total capacitance of the electrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app