Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Identification of drivers for the metamorphic transition of HIV-1 reverse transcriptase.

Biochemical Journal 2017 September 25
Recent structural characterizations of the p51 and p66 monomers have established an important starting point for understanding the maturation pathway of the human immunodeficiency virus (HIV)-1 reverse transcriptase p66/p51 heterodimer. This process requires a metamorphic transition of the polymerase domain leading to formation of a p66/p66' homodimer that exists as a structural heterodimer. To better understand the drivers for this metamorphic transition, we have performed NMR studies of 15 N-labeled RT216 - a construct that includes the fingers and most of the palm domains. These studies are consistent with the conclusion that the p66 monomer exists as a spring-loaded complex. Initial dissociation of the fingers/palm : connection complex allows the fingers/palm to adopt an alternate, more stable structure, reducing the rate of reassociation and facilitating subsequent maturation steps. One of the drivers for an initial extension of the fingers/palm domains is identified as a straightening of helix E relative to its conformation in the monomer by eliminating a bend of ∼50° near residue Phe160. NMR and circular dichroism data also are consistent with the conclusion that a hydrophobic surface of palm domain that becomes exposed after the initial dissociation, as well as the intrinsic conformational preferences of the palm domain C-terminal segment, facilitates the formation of the β-sheet structure that is unique to the active polymerase subunit. Spectral comparisons based on 15 N-labeled constructs are all consistent with previous structural conclusions based on studies of 13 C-methyl-labeled constructs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app