Add like
Add dislike
Add to saved papers

Aggregation of zein in aqueous ethanol dispersions: Effect on cast film properties.

In this study, we evaluate the influence of zein aggregation in aqueous ethanol dispersions on the properties of zein films. The effects of zein concentration, ethanol content and temperature on transmittance of zein dispersions were investigated. Dynamic light scattering was used to measure the degree of zein aggregation in the dispersions. The results indicate that particle size of zein increased with higher zein concentration, lower ethanol level and at lower temperatures. Zein films were prepared by casting from 70% and 90% aqueous ethanol dispersions at different drying temperatures and were evaluated for appearance, thermomechanical and mechanical properties. Higher ethanol levels and higher drying temperatures promoted the formation of more homogenous films. Films made from higher ethanol dispersions had lower glass transition temperatures than those made from lower ethanol dispersions. Moreover, the fragility factor classified the films as strong systems. Mechanical properties of films were measured at different drying temperatures. Stiffer and more resistant films were developed as the drying temperature increased. In conclusion, film properties can be tailored by controlling the composition of the film casting solvent and the drying temperature. Differences in film properties were found to relate to differences in initial degree of aggregation of zein dispersions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app