Add like
Add dislike
Add to saved papers

High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge.

The properties of biochar derived from waste activated sludge and anaerobic digestion sludge under pyrolysis temperature varying from 400°C to 800°C were investigated. The heavy metals adsorption efficiency of the sludge-derived biochar was also examined. Among the biochar samples tested, ADSBC600 possessing highly porous structure, special surface chemical behaviors and high thermal stability was found to remove Pb2+ from aqueous solutions efficiently with an adsorption capacity of 51.20mg/g. The Pb2+ adsorption kinetics and isotherm for ADSBC600 can be described using the pseudo second-order model and Langmuir isotherm, respectively. Analysis of the characteristics of biochar before and after metal treatment suggests that electrostatic attraction, precipitation, surface complexation and ion exchange are the possible Pb2+ removal mechanisms. This study demonstrates a successful example of waste refinery by converting anaerobic digestion sludge to feasible heavy metal adsorbents to implement the concept of circular economy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app