Add like
Add dislike
Add to saved papers

Mixtures of two self- and mutually-associating liquids: Phase behavior, second virial coefficients, and entropy-enthalpy compensation in the free energy of mixing.

The theoretical description of the phase behavior of polymers dissolved in binary mixtures of water and other miscible solvents is greatly complicated by the self- and mutual-association of the solvent molecules. As a first step in treating these complex and widely encountered solutions, we have developed an extension of Flory-Huggins theory to describe mixtures of two self- and mutually-associating fluids comprised of small molecules. Analytic expressions are derived here for basic thermodynamic properties of these fluid mixtures, including the spinodal phase boundaries, the second osmotic virial coefficients, and the enthalpy and entropy of mixing these associating solvents. Mixtures of this kind are found to exhibit characteristic closed loop phase boundaries and entropy-enthalpy compensation for the free energy of mixing in the low temperature regime where the liquid components are miscible. As discussed by Widom et al. [Phys. Chem. Chem. Phys. 5, 3085 (2003)], these basic miscibility trends, quite distinct from those observed in non-associating solvents, are defining phenomenological characteristics of the "hydrophobic effect." We find that our theory of mixtures of associating fluids captures at least some of the thermodynamic features of real aqueous mixtures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app