Add like
Add dislike
Add to saved papers

Anomalous critical slowdown at a first order phase transition in single polymer chains.

Using Brownian dynamics, we study the dynamical behavior of a polymer grafted onto an adhesive surface close to the mechanically induced adsorption-stretching transition. Even though the transition is first order (in the infinite chain length limit, the stretching degree of the chain jumps discontinuously), the characteristic relaxation time is found to grow according to a power law as the transition point is approached. We present a dynamic effective interface model which reproduces these observations and provides an excellent quantitative description of the simulation data. The generic nature of the theoretical model suggests that the unconventional mixing of features that are characteristic for first-order transitions (a jump in an order parameter) and features that are characteristic of critical points (an anomalous slowdown) may be a common phenomenon in force-driven phase transitions of macromolecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app