Add like
Add dislike
Add to saved papers

Selective depletion of cultured macrophages by magnetite nanoparticles modified with gelatin.

Previous studies have indicated pro-tumor functions of macrophages in tumor progression in different types of malignant tumors. The detailed mechanisms of cell-cell interaction between macrophages and tumor cells have been investigated by means of in vitro co-culture experiments. The present study developed magnetite nanoparticles modified with gelatin that are specifically engulfed by macrophages and investigated methods to deplete these macrophages in co-culture experiments using a magnet. T98G glioma cell line and human monocyte-derived macrophages were mixed and co-cultured for 2 days. The T98G cells were isolated by depletion of the macrophages using the magnetite nanoparticles. mRNA expression of a number of pro-tumor molecules in the isolated T98G cells, with or without co-culture with macrophages, was then evaluated. The mRNA expression levels of chemokine (CC motif) ligand 2, interleukin-6 and macrophage-colony stimulating factor receptor (M-CSFR) were significantly upregulated in T98G cells by co-culture with macrophages (P<0.01). M-CSFR protein expression was also increased by co-culture with macrophages. The conditioned medium of co-cultured cells increased M-CSFR expression in T98G cells. Magnetite nanoparticles may be a novel tool not only for investigating the unique activation status of tumor cells in co-culture conditions, but also for targeting pro-tumor macrophages in tumor tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app