Add like
Add dislike
Add to saved papers

CCAAT enhancer binding protein β has a crucial role in regulating breast cancer cell growth via activating the TGF-β-Smad3 signaling pathway.

The aim of the present study was to examine the effect of CCAAT enhancer binding protein β (C/EBPβ) on human breast cancer cells. The plasmids pCDH-C/EBPβ and pLKO.1-shC/EBPβ were constructed and were infected into MDA-MB-468 cells, to provide C/EBPβ overexpressing and C/EBPβ knockdown cells, respectively. Cell viability, cell cycle and apoptosis were observed by MTT assay and flow cytometry analysis. Protein expression levels of C/EBPβ, TGF-β1, P-Smad3 and Smad3 were detected by western blotting. MTT assay showed that the absorbance of MDA-MB-468 cells in the pCDH-C/EBPβ group was increased, whereas that in the pLKO.1-shC/EBPβ group was decreased, compared with the respective control at 48 and 72 h. Flow cytometric analysis indicated that the percentage of cells in the G2 phase was significantly increased in the pCDH-C/EBPβ group (P<0.05) and decreased in the pLKO.1-shC/EBPβ group compared with the respective control group. The proportion of apoptotic cells was decreased in the pCDH-C/EBPβ group and increased in the pLKO.1-shC/EBPβ group compared with the controls. The scratch-wound assay revealed that MDA-MB-468 cells depleted of C/EBPβ exhibited reduced motility compared with the control cells. Moreover, western blotting demonstrated that pCDH-C/EBPβ increased transforming growth factor (TGF)β1 and P-Smad3 protein expression and decreased Smad3 protein expression, whereas pLKO.1-shC/EBPβ decreased TGFβ1 and P-Smad3 protein expression and increased Smad3 protein expression levels. The present study demonstrated that C/EBPβ has a crucial role in regulating breast cancer cell growth through activating TGF-β-Smad3 signaling. These findings suggest that C/EBPβ may be a potential therapeutic target for breast cancer; however, in vivo studies are required to confirm this.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app