Add like
Add dislike
Add to saved papers

Reactive oxygen species mediated NF-κB/p38 feedback loop implicated in proliferation inhibition of HFLS-RA cells induced by 1,7-dihydroxy-3,4-dimethoxyxanthone.

1,7-Dihydroxy-3,4-dimethoxyxanthone (XAN) is a bioactive compound isolated from Securidaca inappendiculata Hassk. and exerts the inhibitory effects on fibroblast-like synoviocytes by targeting NF-κB and p38. This study was designed to elucidate mechanisms underlying the divergent regulation on the two pathways in HFLS-RA cells by XAN. Expressions of hallmark proteins and transcription of GADD45α mRNA were determined by Western-blot and RT-qPCR methods, respectively. Fluorescence staining was employed to evaluate intracellular oxidative stress. Effects of XAN and N-acetyl-l-cysteine (NAC) on the proliferation of cells were investigated by MTT assay, and pro-apoptotic effects of XAN were assessed by Annexin V-FITC/PI method. It was found XAN blocked NF-κB signaling in HFLS-RA cells shortly after treatment. Moreover, it up-regulated both transcription and expression of GADD45α, and subsequently activated p38 pathway. As time went on, XAN significantly promoted the generation of reactive oxygen species (ROS), which accompanied with sustained up-regulation of p-p38 and increased apoptosis. 48H later, dual-effects of XAN on NF-κB and p38 were reversed. As activation of p38 and increased apoptosis induced by XAN were antagonized by NAC, they were deemed as ROS mediated effects. Furthermore, the accumulated ROS should also account for the activation of NF-κB in the late stage of treatments via interfering in p38/MSK1/NF-κB feedback. Altogether, these findings suggested XAN-induced ROS contributed great importance to the proliferation inhibition of HFLS-RA cells by mediating NF-κB/p38 feedback loop and apoptosis, which provided us a panoramic view of potential target in the therapy of RA by XAN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app