Add like
Add dislike
Add to saved papers

Studies on the regulation of lipid metabolism and the mechanism of the aqueous and ethanol extracts of Usnea.

OBJECTIVES: Usnea is a lichen of Usnea diffracta Vain and Usnea longissima Ach, which belongs to the genus Usnea Adans of Usneaceae. Usnea exerts numerous pharmacological activities, while its lipid regulatory activities remain unreported. This study aims to evaluate the effects of aqueous and ethanol extracts of Usnea on the regulation of lipid metabolism and to explore the possible mechanism.

METHODS: Hyperlipidemia rat model was established by feeding with high-fat diet for 45days. Therapy rats were intragastrically administered with simvastatin (0.004g/kg/d), Usnea aqueous extract (2.766g/kg/d), or Usnea ethanol extract (2.766g/kg/d) for 20days. Pharmacodynamic effects, including body weight, serum and liver lipid levels, total bile acid (TBA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), liver index, and hepatic morphological changes were evaluated. To explore the mechanisms, the lipase activities and protein expressions related to lipid metabolism were detected.

RESULTS: Compared with the model group, aqueous and ethanol extracts of Usnea can slow down the weight gain of rats, significantly reduce the serum levels of total cholesterol, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and the liver contents of TG, LDL-C, as well as significantly increase the contents of high-density lipoprotein cholesterol in serum. In addition, aqueous and ethanol extracts of Usnea can significantly reduce the serum contents of AST and ALT. Furthermore, ethanol extract of Usnea can also significantly reduce the TBA content in serum and liver index. Liver tissue pathological observation showed that aqueous and ethanol extracts of Usnea can improve cell degeneration to a certain extent. Aqueous and ethanol extracts of Usnea can significantly reduce sterol regulatory element-binding proteins-1c, and liver X receptor α (LXR-α) protein expressions. Furthermore, aqueous extract of Usnea can significantly increase hepatic lipase activity and promote apoprotein A5 (ApoA5) protein expression.

CONCLUSIONS: These findings strongly suggest that the aqueous and ethanol extracts of Usnea play significant roles in regulating lipid metabolism, and the ethanol extract exhibits higher activity than the aqueous extract. The mechanism of the regulation of lipid metabolism by Usnea aqueous extract may involve the increased ApoA5 protein expression via inhibition of the LXR-α signal pathway; however, the mechanism of the regulation of lipid metabolism by Usnea ethanol extract remains to be further studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app